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a  b  s  t  r  a  c  t

The  expected  performance  of  spatial  (“flat-bed”)  two-dimensional  liquid  chromatography  (xLC  × xLC)  has
been calculated  using  the Pareto-optimality  strategy.  This  approach  allowed  different  objectives  (total
peak  capacity,  total  analysis  time,  and total  dilution)  to  be considered  simultaneously  and  to establish
optimal  parameters  (pressure  drop,  particle  size,  bed  length,  and  initial  spot  size).  The  performance  of
spatial two-dimensional  chromatographic  systems  was  compared  with  that of  conventional  on-line,  real-
time two-dimensional  column-liquid-chromatography  systems  (tLC  × tLC).  The  potential  gain in  peak
capacity  and/or  analysis  time  of  the  spatial  configuration  was confirmed.  By  restricting  the  spatial  param-
eters  to realistic  chromatographic  conditions  (limiting  the  stress,  as  counterbalance  for  the  pressure  drop
through the  sorbent  bed,  to  2500  kg)  it was  found  that xLC × xLC  is  attractive  for  very fast  analysis  of
complex  samples,  rather  than  for  extremely  efficient  separations.  For  example,  a peak  capacity  of  780
may be achieved  in  only  2.7  min  using  a 100  ×  100  mm  sorbent  bed  of a quality  currently  encountered
thin-layer  chromatography.  Furthermore,  if beds  can  be  packed  as  efficiently  as  contemporary  columns,
the predicted  peak  capacity  increases  to around  1000,  corresponding  to  a  peak-production  rate  of  about
6.3 peaks/s.  Possibilities  to  boost  the  performance  of xLC  × xLC  further  are  briefly  discussed.  Unless  we  can

x x t t
overcome  the severe  stress  requirements  of  high-performance LC  × LC, conventional LC  × LC  may  be
more  amenable  to very  complex  separations,  thanks  to the  very  high  peak  capacities.  However, tLC × tLC
separations  will  require  long  analysis  times  (e.g.  10,000  peaks  in  37  h, corresponding  to  0.075  peaks/s  at
a  pressure  drop  of  40 MPa).  The  best trade-off  between  total  peak  capacity,  total  analysis  time,  and  total
dilution  under  restricted  (realistic)  conditions  was obtained  using  high  pressures,  small  chromatographic
beds,  small  particles,  and  relatively  large  sample  spots.
. Introduction

Modern liquid chromatography is all about resolving the highest
umber of peaks in the shortest possible time. To realize this, high
ystem performances are indispensable. A way to express the sep-
ration potential of a chromatographic system is the peak capacity,
c. This parameter was introduced by Giddings in 1967 as a measure
or the number of peaks that can be located – at equal resolution –
etween the first (unretained) and the last (most retained) peaks

n a chromatogram [1].  However, a statistical treatment, assum-
ng the peaks to be distributed randomly, has revealed that the

umber of single-component peaks cannot exceed about 18% of
he peak capacity [2].  Furthermore, the expected total number
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of peaks p (i.e. singlets, doublets, triplets, etc.) can be expressed
by [2]:

p  = me−m/nc (1)

where m is the number of components in the sample and nc the
peak capacity.

In the field of systems biology (proteomics, metabolomics,
etc.) very complex samples are frequently encountered. A typical
proteome sample may  contain 10,000–50,000 different proteins
or – in case these proteins are digested prior to analysis –
100,000–500,000 different peptides [3].  It is clear from Eq. (1) that
it is virtually impossible to separate all the components in such
a complex sample. However, irrespective of the complexity of the
sample, maximizing the number of separated components can only

be achieved through maximizing the peak capacity of the chro-
matographic system (Eq. (1)).

The most straightforward approach to increase the peak capac-
ity in one-dimensional liquid chromatography (1D-LC) is to

dx.doi.org/10.1016/j.chroma.2012.01.059
http://www.sciencedirect.com/science/journal/00219673
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ncrease the number of plates, N. Many theoretical and experimen-
al studies into achieving high peak capacities in one-dimensional
olumn LC (1D-tLC) have been published [4–15]. For example, Shen
t al. realized a peak capacity of 1500 for the separation of a
ryptic digest of Shewanella oneidensis in approximately 33 h with
radient-elution reversed-phase LC (RPLC), using a 2 m × 50 �m I.D.
used-silica column packed with 3.0-�m porous C18 particles [14].
eltink et al. recently obtained a peak capacity exceeding 1000 in
0 h for the separation of a proteolytic digest of Escherichia coli in
PLC, using a monolithic poly(styrene-co-divinylbenzene) capillary
olumn of 1 m length [4].  The law of diminishing returns is, how-
ver, merciless in 1D-LC. Once nc is large, even a slight increase
ill require a very much longer analysis time [16]. For separating

he proteomics samples mentioned above 1D-LC clearly falls way
hort.

Potentially, a much more favourable trade-off can be achieved
n comprehensive two-dimensional column LC (commonly LC × LC,
ut in the context of the present paper denoted as tLC × tLC). In
his configuration, the theoretical total peak capacity of the two-
imensional set-up 2Dnc equals the product of the peak capacities
btained in each dimension separately, whereas the total analysis
ime 2Dtw equals the sum of the analysis times for each dimen-
ion [17,18]. The first-dimension separation is usually very slow,
ut the peak capacity can be increased by an order of magnitude

n comparison with 1D-LC, while keeping the analysis time within
easonable limits. However, to make full use of this gain in peak
apacity, tLC × tLC should make use of two completely different
independent or “orthogonal”) separation mechanisms. Any cor-
elation between the retention times in the two dimensions will
esult in a decrease in the effective peak capacity and the experi-
entally obtained nc values will be lower than the product of the

eak capacities in the individual dimensions.
Two-dimensional (liquid) chromatographic separations can be

ivided into two categories, i.e. time-based (tLC × tLC) and spa-
ial (xLC × xLC) separations. Time-based LC (tLC) is associated with
he traditional “column” chromatography, in which solutes are
luted from the separation body to be detected. In the case
f spatial chromatography (xLC) the solutes migrate to specific
ositions in the separation body. In tLC × tLC small consecutive
ractions from the first dimension are injected in the second dimen-
ion. The resulting series of second-dimension chromatograms
an be visualized as a two-dimensional color map. In spatial
wo-dimensional chromatography, the separation is carried out
hysically in a two-dimensional flat bed, separating the compounds

n one direction (first dimension) and then in a perpendicular direc-
ion (second-dimension). The compounds may  be detected in the
wo-dimensional plane (xLC × xLC) or they may  be eluted from the
ed during the second-dimension separation (xLC × tLC).

Comprehensive two-dimensional column LC can be operated
n either an on-line (tLC × tLC) or off-line (tLC/×/tLC) mode. In the
n-line mode, the second-dimension separations are carried out
uring the first-dimension elution. In order for a first-dimension
eak to be sampled in several second-dimension runs the first
imension should be (very) slow and the second one (very) fast.

n the off-line mode, a fraction collector is used to store fractions
rom the first dimension, carrying out the second-dimension runs
n an independent second step. Stop-flow on-line tLC × tLC [19] is

 compromise in which the times are decoupled, but the sample
emains confined within a single instrument. Both on-line and off-
ine modes have advantages and disadvantages. When the total
nalysis time is an issue, on-line tLC × tLC is usually preferred.
owever, this approach has a limited separation power due to the
hort analysis time available in the second dimension. In tLC × tLC
he second-dimension separation can be viewed as a detector of
he first-dimension separation. In order to preserve the separation
btained in the first dimension the eluting peaks should be sampled
togr. A 1235 (2012) 39– 48

with sufficient frequency. However, this is not possible because of
time limitations. In practice, one accepts a certain decrease in the
actual first-dimension peak capacity due to “undersampling” first-
dimension peaks and the resulting additional band broadening in
the first dimension [20–22]. Furthermore, the second-dimension
chromatogram is likely to suffer from injection band broadening,
since relatively large volumes of effluent from the first-dimension
separation are injected on the second-dimension column. This
effect has a negative impact on the second-dimension peak capac-
ity. In the end, the modulation time should be carefully optimized,
taking into account all these effects to reach the best possible com-
promise [23].

Most separations described in literature using the on-line con-
figuration required analysis times of less than 2 h and produced
peak capacities between 500 and 1000 [24]. For example, Stoll
et al. claimed a peak capacity of 1024 for an on-line tLC × tLC sep-
aration of plant metabolites in roughly 30 min, corresponding to a
peak-production rate of more than 0.5 peaks/s [24,25].

When a high peak capacity is the main objective and the total
analysis time is not constrained, off-line tLC/×/tLC may be pre-
ferred. Very long analysis times may  be required. For example,
Eeltink et al. obtained a peak capacity of 8720 for an off-line 2D-LC
separation of an E. coli digest in 1560 min, which corresponds to a
peak-production rate of about 0.1 peaks/s [26].

A potential way  to overcome the limitations of comprehensive
two-dimensional column LC is two-dimensional spatial chro-
matography (xLC × xLC). Analytes are separated in a porous flat bed
to end up at specific locations in the separation medium, rather
than specific elution times. Typically, a sample may be injected at
(or close to) a corner of the plane and then eluted along the x-axis
by pumping an appropriate solvent in the direction parallel to that
axis. After a certain time the flow of the first dimension solvent
is stopped and a second solvent is pumped in the perpendicular
direction (along the y-axis of the plane) resulting in migration of
the analytes in the second dimension. This implies that each sepa-
rated compound of the sample may  ultimately be characterized by
a combination of its x and y coordinates. As before, a high degree of
orthogonality between the two separation dimensions is required
to make full use of the total two-dimensional peak capacity. This
may, for example, be achieved by packing a narrow strip at the
edge of the (x direction) with a material that is different from that
used in the rest of the plane [27,28],  by using strongly different
mobile-phase conditions for each dimension [28], or by combining
electrically driven and pressure-driven separations [29]. No frac-
tion collection or valve switching is required for xLC × xLC, but the
overriding argument in its favour is that all second-dimension sep-
arations are performed simultaneously. This fundamentally implies
that shorter analysis times and higher peak capacities can be
achieved in comparison with column-based tLC × tLC.

Prime examples of spatial two-dimensional separations are
two-dimensional polyacrylamide gel electrophoresis (2D-PAGE)
and two-dimensional thin-layer chromatography (2D-TLC). The
former technique is known to have a very high resolving power
(peak capacities up to 10,000 have been demonstrated [30]), but
it has some important drawbacks. 2D-PAGE is labor-intensive
and difficult to automate. It has a limited loading capacity and
low efficiency in the analysis of hydrophobic proteins, it is
time-consuming, and it cannot be coupled on-line with mass-
spectrometric (MS) detection [31–33].

To increase the separation power of conventional TLC,
forced-flow (thin) layer chromatographic techniques have been
introduced already in the late 1970s. One of these techniques is

over-pressured thin-layer chromatography (OPTLC) [34]. The key
feature of this approach lies in the fact that the mobile phase does
not flow due to capillary action under atmospheric conditions, but
is driven by pressure. A closed-bed compartment and a pump are
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sed to push the mobile phase through the separation medium.
his results in a constant mobile-phase velocity. The most modern
ommercially available OPTLC systems allow operating pressures
p to 5 MPa  (50 bar) and, consequently, small particles [35–37].

OPTLC devices are basically designed to perform one-
imensional separations, but researchers have tried to come up
ith similar instrumentation for two-dimensional separations. A

eneralization of the concept was already published in the 1980s
y Guiochon et al. [27,38]. However, the practical implementations
ave been quite limited so far [29,39,40].  A theoretical study into
he potentially attainable peak capacity in such a two-dimensional
et-up was published by Guiochon et al. [18,28].

In the present study we have performed theoretical computa-
ions to compare the trade-off between time and peak capacity
or tLC × tLC and xLC × xLC. As a basis for this comparison we used
he concept of Pareto optimization to establish optimal (system)
onditions for both types of two-dimensional chromatography, in
uch a way that maximum peak capacities and minimum analy-
is times could be obtained. Pareto optimization has already been
pplied to tLC × tLC, taking into account the effects of additional
and broadening (undersampling in the first dimension and injec-
ion band broadening in the second dimension) and dilution of the
ample in both dimensions for both isocratic and gradient-elution
xperiments [23]. However, to our knowledge, the concept has not
et been applied to xLC × xLC. We  were able to apply the Pareto-
ptimization concept to this type of chromatography by taking
he theoretical equations developed by Guiochon et al. for peak
apacity in xLC × xLC [18] as a starting point. We  established new
quations to account for dilution of the sample in each dimen-
ion. We  focused on chromatographic conditions that are currently
ccessible (pressure limit 5 MPa  and particle sizes down to 4 �m).

The goal of this study was not only to find optimal conditions
or two-dimensional spatial chromatography, but also to estimate
he gain in analysis time that xLC × xLC entails in comparison with
LC × tLC for specific peak capacities. This gain is calculated taking
nto account the total stress experienced by the chromatographic
ystem, which in xLC × xLC is proportional to the pressure drop.
y restricting this total stress to 2500 kg, a realistic estimate of the
otential performance of xLC × xLC can be obtained. In addition, the
ystem was investigated for a three-goal trade-off between (max-
mum)  peak capacity, (minimum) analysis time and (minimum)
ilution.

. Theory

In this section, equations that link several chromatographic
arameters necessary for the calculation of the total analysis time
nd the total peak capacity will be presented. Subsequently, these
quations will be applied as part of the Pareto optimization of
wo-dimensional spatial chromatography and the results will be
ompared with those obtained for tLC × tLC [23].

.1. General equations for xLC × xLC and tLC × tLC

The pressure drop across a chromatographic system (�P) can
e expressed by Darcy’s equation:

P = um��L

d2
p

= ��L2

tmd2
p

(2)

n which um is the linear velocity corresponding to an unretained
ompound, � is the flow-resistance factor, � the mobile-phase vis-

osity, L the length of the column (or the bed), and dp the particle
ize. The right-hand side of Eq. (2) uses implicitly the definition of
inear velocity, i.e. um = L/tm, with tm being the time required for an
nretained compound to reach the end of the stationary phase. As
togr. A 1235 (2012) 39– 48 41

was already discussed in [23], according to Cramers et al. [41] um

should be defined as the velocity of the mobile phase corresponding
to an unretained compound able to fully penetrate the stationary
phase pores. This convention was  therefore followed throughout
this paper. The flow-resistance factor is affected by the choice of
this convention. Appropriate values were used in the present study.

Concerning the pressure drop, it was  assumed in this work
that the chromatographic system is running continuously under
the maximum allowable pressure defined by the manufacturer,
i.e. 40 MPa  and 5 MPa  for time-based and space-based chromato-
graphic instruments, respectively.

A general way  to express the efficiency of a chromatographic
system is to use the reduced van-Deemter equation:

h = a + b

v
+ cv (3)

where h represents the reduced (dimensionless) plate height
(h = H/dp with H being the plate height), and a, b, and c are coef-
ficients related to the Eddy diffusion, molecular diffusion, and
mass-transfer contribution, respectively. In Eq. (3) � is the reduced
velocity that can be expressed as

v = umdp

Dm
(4)

in which Dm is the molecular diffusion coefficient of the analyte in
the mobile phase.

For a two-dimensional chromatographic system, the theoreti-
cal total analysis time (2Dtw) and total peak capacity (2Dnc) can be
calculated using the following equations [17,18]

2Dtw = 1tw + 2tw (5)

2Dnc = 1n.2n (6)

where 1tw and 2tw are the analysis times in the first- and second-
dimension, respectively, and 1n and 2n the peak capacities in these
two dimensions. Eqs. (5) and (6) illustrate the advantage of two-
dimensional chromatography with respect to one-dimensional
chromatography in terms of speed and peak capacity. As peak
capacities are multiplied, while retention times are summed, a
much higher separation power can be obtained in an only slightly
longer analysis time.

Commonly, the retention factor k is defined as

k = VR − Vm

Vm
(7)

where VR is the elution volume of a compound of interest and Vm

the elution volume of an unretained compound.

2.2. Calculation of total peak capacity and analysis time in
xLC × xLC

Note that, in spatial chromatography, the retention factor is
written as follows:

k = VR − Vm

Vm
= L − xR

xR
(8)

where xR is the position of a compound along the chromatographic
bed. It follows that

xR = L

k + 1
(9)
Guiochon et al. derived the theoretical equation for the two-
dimensional peak capacity in spatial chromatography [18,28].
Introducing Eq. (4) and assuming a thin-layer packed with silica
particles, which is subsequently developed in two directions and
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was varied in steps of 5 s from 5 to 360 s and in steps of 30 s
from 360 to 1800 s. The particle size was varied in steps of 0.1 �m
from 4 to 8 �m and in steps of 1 �m from 8 to 12 �m.  All com-
binations of factors resulted in 21,600 computations. The output

fix tm(5-1800 s)

fix dp (4-12 μm)

fix 4σi (0.5-4 mm )i ( )

from Eq.  2: 

bt i Lobt ain L

-4:from Eqs . 3 4:

obtain  ν,  h, H

from Eq 10: from Eq 18:from Eq 13:from Eq. 

obtain 2nspatial

from Eq. 

obtain 2DDF

from Eq . 

obtain 2Dtw,spatial

Pareto analysisPareto

(section 4.2 and 4.3)

Pareto analysisPareto
2 D.J.D. Vanhoutte et al. / J. C

ssuming that the first dimension flow is stopped when a non-
etained compound reaches the edge of the bed, one obtains

nspatial = 1
4H2

(√
�i

2 + LH
(

1 + 2�

h�

)
−
√

�i
2 + 2�LH

h�

)2

(10)

n which �i is the standard deviation of the sample spot and �
he bed tortuosity. This equation is only valid in the case in which
he bed and diffusion characteristics (H, Dm, L and um) are consid-
red to be equal in both directions and the concentration profiles
f the sample spot follow a Gaussian distribution in both direc-
ions [18,28]. These assumptions have been made throughout the
resent paper.

In the case in which the initial sample spot is negligibly small
4�i « 4

√
(2�LH/h�)), the equation can be simplified to

n∗
spatial = L

4H

(√
1 + 2�

h�
−
√

2�

h�

)2

(11)

n spatial chromatography the mobile-phase flow is stopped in each
imension when an unretained compound reaches the edge of the
ed. Therefore, the total development time in spatial chromatog-
aphy can be expressed as

Dtw,spatial = 1tw + 2tw = 1tm + 2tm (12)

r, in case the bed lengths and flow rates are equal in both dimen-
ions (1tm = 2tm = tm):

Dtw,spatial = 1tm + 2tm = 2tm (13)

.3. Calculation of the total dilution in xLC × xLC

An important aspect in chromatographic analysis is the dilu-
ion of the analytes. Too much dilution will aggravate the detection
roblems that liquid chromatographers are all too often confronted
ith. Assuming that the concentration profiles of a sample spot

including the injection spot) follow a Gaussian distribution and
hat the law of mass conservation holds, one finds that the dilution
actor (DF) can be expressed as

F = hP,init

hP,fin
= �fin

�init
(14)

here hP,init and hP,fin are the initial peak height and the peak height
f a solute after development, respectively and �init and �fin the
tandard deviation of the initial sample spot and that after devel-
pment, respectively.

The standard deviation after each development is a measure for
he total spot broadening and can be expressed as [18]:

fin,1 =
√

�i
2 + 2�Dmtm + xH1 (15)

fin,2 =
√

�i
2 + 2�Dmtm + yH2 (16)

here �fin,1 and �fin,2 are the spot variances in length units after
he two developments.

The total dilution (2DDF)  of the chromatographic process can
ubsequently be calculated from

DDF = 1DF × 2DF (17)

n which 1DF and 2DF are defined as the dilution experienced in the
rst and second dimension, respectively.

Implementing Eqs. (9) and (14)–(16) in Eq. (17) and again
ssuming equal bed characteristics in both directions yields:
DDF = 1 +
(

2�Dmtm + LH
(k+1)

�2
i

)
(18)
togr. A 1235 (2012) 39– 48

3. Experimental

3.1. Parameters used

The use of Eqs. (2)–(18) allows connecting the total peak
capacity to the total analysis time and the total dilution in an
xLC × xLC system. Some parameters, such as the maximum pres-
sure drop, particle size of the chromatographic bed and sample
spot size given in Eqs. (2)–(18) can be defined by the user. Other
parameters, such as van-Deemter coefficients (a, b, and c), viscos-
ity, diffusion coefficient, bed tortuosity and resistance factor, and
retention factors depend on the particular LC system. The typical
values for the parameters used in Eqs. (2)–(18) are summarized in
Table 1.

3.2. Computation of the Pareto front

Fig. 1 describes the process of calculating the chromatographic
parameters using Eqs. (2)–(18). After the parameters have been
defined as in Table 1, the first step is to fix the development
time tm. Note that, as we  impose symmetrical conditions for the
two (first- and second-dimension) developments, tm is the same
for both dimensions. At a fixed value of dp, Eq. (2) is applied
to obtain L (see Fig. 1). From the values of L and tm, um can be
calculated, and hence � (Eq. (4)). Eq. (3) is then applied to calcu-
late h, and (since dp is known) the actual plate height, H. From
there, the peak capacity of the system, the total analysis time and
the total dilution are straightforwardly computed from Eqs. (10),
(13) and (18), respectively. This process can be repeated for vari-
ous combinations of values of dp, tm and �i (which constitute the
experimental factors considered). All permutations are computed
to find optimal conditions. In this study this was achieved using
a simple Excel spreadsheet. The three variables had the follow-
ing values (see Table 1). The development time varied from 5 s
to 1800 s, the particle size varied between 4 and 12 �m,  and the
initial spot size varied from 0.5 to 4 mm.  The development time
(section 4.5)

Fig. 1. Flowchart describing the process to calculate the different chromatographic
parameters required to perform the two-objective (Sections 4.2 and 4.3) and three-
objective (Section 4.5) Pareto analyses.
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Table 1
Chromatographic parameters used in this study to calculate peak capacities, analysis times, and dilution factors in two-dimensional spatial LC. Where relevant, a reference
is  included.

Name Value Units Equation Reference

van-Deemter coefficient, a 0.5 (3) [37]
van-Deemter coefficient, b 6 (3) [37]
van-Deemter coefficient, c 0.4 (3) [37]
Diffusion coefficient, Dm 10−9 m2/s (4), (15), (16) and (18) [23]
Maximum pressure drop, �P 0.5 × 107 Pa (2) [35]
Bed  resistance factor, � 1000 (2) [23,37]
Bed  thickness, db 0.1 mm
Mobile-phase viscosity, � 10−3 Pa s (2) [23]
Bed  tortuosity, Y 0.75 (10), (11), (15), (16) and (18) [18,28]
Particle size, dp 4–12 �m (2) [37]
Resolution, Rs 1
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Fig. 2. Pareto fronts for the two-objective optimization of peak capacity and anal-
ysis time for two-dimensional liquid chromatography systems in the column and
spatial modes. The solid and dashed lines correspond to a standard HPLC × HPLC
system (gradient elution in first dimension, isocratic elution in the second dimen-
sion), and an ultra-high performance system (UHPLC × UHPLC, with gradient elution
in  both dimensions), respectively. Band-broadening effects are considered in both
dimensions. Appropriate conditions and parameter values for both types of time-
Development time in first and second dimension, tm 5–1800 

Initial  sample spot size, 4� i , 0.5, 1, 2, 4
Retention factor, k 1 

arameters (bed length, total peak capacity, total analysis time,
otal dilution, etc.) for each case were calculated using the pro-
edure described above. A filtering step could follow, eliminating
hose cases that imply non-practical situations (for example, col-
mn beds exposed to excessive stress, see Section 4.2). Finally, after
aving defined the objectives of the optimization (peak capacity,
ime and, in some studies, dilution), the Pareto-optimization algo-
ithm was applied to all cases. The Pareto-optimization principle
as been described elsewhere [42] and will not be discussed here

n detail. In short, this technique is based on inspecting only those
xperiments which are Pareto-optimal. This is the case when it is
ot possible to improve one of the objectives without worsening
he other(s). In our framework, the set of Pareto-optimal cases (the
o-called Pareto front) represents the limit of our possibilities in
erms of obtaining the highest possible peak capacity in the short-
st possible time and with the lowest possible dilution. One should
ote that the dimensionality of the Pareto front depends on the
umber of objectives. If two objectives are considered (i.e. maxi-
ize total peak capacity and minimize analysis time) the Pareto

ront is a (curved) line. In case of a three-objective optimization
i.e. maximize total peak capacity minimize analysis time and min-
mize dilution) the Pareto front is a surface in three-dimensional
pace.

To find the Pareto-optimal experiments from the Excel table
entioned above, a home-build Pareto-optimization routine was

mplemented in MATLAB 7.11 (The Mathworks, Natick, MA).

. Results and discussion

.1. Influence of initial spot size dimensions on total peak capacity

A study was carried out to verify the validity of Eq. (11),
he approximated form of Eq. (10). To this aim, for each of the
1,600 combinations of factors mentioned above, the value of
he two-dimensional peak capacity in xLC × xLC was calculated
sing Eq. (10) and Eq. (11). It was observed that, for the small-
st spot size (4�i = 0.5 mm),  the approximation contained in Eq.
11) is valid if one accepts deviations of up to 5%. Only in some
ases (considering small particles and extremely short develop-
ent times) the approximation is not valid. However, the number

f cases in which the approximation implies a deviation of more
han 5% dramatically increases for larger spot sizes. In these
ases, the equation is not valid across the entire range of par-
icle sizes under study. This is especially noteworthy for the

argest spot size considered in our study (4�i = 4 mm). In this case,
he approximated formula deviates more than 5% from the non-
pproximated expression in all cases (deviations of up to 86% were
ncountered).
s (2), (12), (13), (15), (16) and (18)
mm (10), (15), (16) and (18) [37]

(7)–(9) and (18)

This effect was discussed in [18]. In this paper, the maximum
dimensions of the initial sample spot size were defined as

�i <
√

0.1Ldp (19)

which implies that small particles and a short chromatographic bed
would require a small maximum spot size if Eq. (11) is applied. This
confirms the observations discussed above. Since in our computa-
tions Eq. (11) is not applicable in a significant number of cases,
we will make use of Eq. (10) through this paper. This allows us to
consider larger initial spot sizes than indicated by Eq. (19).

4.2. Pareto analysis of two-dimensional systems in the column
and spatial modes

Fig. 2 depicts an overlay of four Pareto fronts corresponding to
different two-dimensional chromatographic systems. The solid line
corresponds to the “standard” tLC × tLC system described in [23], in
which the first- and second-dimension elution conditions are gra-
based chromatographic systems are given in [23]. The line represented by � symbols
illustrates the Pareto front for xLC × xLC, using a sorbent bed of TLC quality. The line
represented by the × symbol illustrates the Pareto front for xLC × xLC, assuming a
bed  with HPLC-quality packing. Appropriate parameter values are listed in Table 1
and  conditions are described in Section 3.
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his curve is thought to represent the best that comprehensive
wo-dimensional column LC (i.e. tLC × tLC) can offer.

Both the solid and the dashed lines have been constructed while
aking the band-broadening effects in both dimensions due to the
se of modulation into account. For a more detailed explanation
f the band broadening effects, choice of appropriate conditions,
arameter values, and other relevant information concerning both
ypes of tLC × tLC Ref. [23] should be consulted.

The curve formed by the � symbols depicts the Pareto front for
LC × xLC, following Eqs. (2)–(18) and using the parameters listed
n Table 1 and conditions described above (see Section 3). The curve
ormed by the × symbols illustrates the Pareto front for xLC × xLC
n which the same packing efficiency is assumed as in conventional
hromatographic columns. To obtain these results a Pareto analysis
as performed using the reduced van-Deemter coefficients that
ere used in [23] (i.e. a = 1.5, b = 1, c = 0.15), instead of a = 0.5, b = 6

nd c = 0.4, while leaving the other parameters and conditions the
ame.

The solid and dashed lines represent the limit of our possibilities
ith packed columns and conventional HPLC systems and ultra-
igh-performance LC instruments, respectively, in tLC × tLC. The
esults depicted in Fig. 2 for the conventional (HPLC) case concern

 system in which gradient elution is applied in the first dimension
nd isocratic elution in the second (gradient × isocratic). This is the
tandard situation in our laboratory, but a good deal of work has
lso been published applying gradient conditions in both dimen-
ions (examples see Refs. [43–47]). In the latter case higher peak
apacities are generally obtained, but the total analysis time would
e higher due to the re-equilibration time needed if a single second-
imension column and solvent-delivery system are used. Pareto
nalysis for conventional gradient × gradient HPLC has been dis-
ussed in [23].

Fig. 2 shows a clear advantage of two-dimensional spatial chro-
atography over the time-based (column) chromatography. To

btain the same total peak capacity the analysis time can be
ignificantly shortened. Using an existing OPTLC apparatus with
LC-quality beds (square boxes in Fig. 2) one can observe that
he spatial mode outperforms HPLC × HPLC (solid line) and even
HPLC × UHPLC (dashed line). For example, to achieve a peak
apacity of 2000, an analysis time of 60 min, 24 min, and 18 min
ould be required for HPLC × HPLC, UHPLC × UHPLC, and xLC × xLC,

espectively. This would imply a reduction in analysis time of
0% in comparison with HPLC × HPLC and 25% in comparison with
HPLC × UHPLC.

If we learn to pack thin beds as efficiently as packed columns,
nly 10 min  would be required to achieve a peak capacity of 2000.
his would imply a gain in analysis time of 83% with respect to
PLC × HPLC and 58% when compared with UHPLC × UHPLC.

The fundamental reason for these great gains in analysis time
hen using the spatial mode is the simultaneous separation of the

ntire sample in the second dimension. Also, the time restrictions
or the second dimension become largely irrelevant, because this
eparation has to be performed only once. In contrast, in time-based
eparations the analysis time for the second dimension should be
he same as the modulation time. A long modulation time yields a

ajor gain in the second-dimension peak capacity (due to longer
hromatograms). However, this is accompanied with a loss in peak
apacity in both dimensions (due to “undersampling” in the first
imension and increased injection band broadening in the second
imension). The balance between the positive and negative effects
as been discussed by Horie et al. [21] and by Vivó-Truyols et al.
23].
In spatial chromatography all second-dimension elutions are
erformed simultaneously. Hence, there is no need to strike a com-
romise. Furthermore, since no modulation (valve) is needed for
LC × xLC, the above-mentioned additional band-broadening (due
Fig. 3. Pareto front for xLC × xLC with HPLC packing efficiency illustrating the achiev-
able peak capacity as a function of the total stress required using parameters listed
in  Table 1 and conditions as described in Section 3.

to “undersampling” and second-dimension injection volume) is
avoided. However, it follows from Eqs. (10) that large peak capac-
ities in xLC × xLC require large two-dimensional separation beds.
Even in combination with a moderate pressure drop of 5 MPa
(50 bar or 730 psi), this would require extremely large forces on
the spatial chromatographic device. This will be addressed in the
next section.

4.3. Constrained optimization

Fig. 3 indicates the total peak capacity in well-packed xLC × xLC
as a function of the total stress required, using a = 1.5, b = 1 and
c = 0.15 in Eq. (3).  Interestingly, one observes that the curve is rela-
tively flat for values of peak capacity up to around 1000. However,
at higher values for the total peak capacity the total required force
increases strongly. As a consequence, a minor gain in peak capac-
ity requires a substantial increase in the total force applied on the
chromatographic device. Much greater forces are required in the
region of high nc values. A stress of 20,000 kg is needed to obtain
a peak capacity of around 2000; an additional 100 in peak capac-
ity would require an extra 3500 kg of stress. Such extremely high
stresses may  be difficult to deal with in practice. They have not
been considered in the present study to avoid creating unrealistic
expectations.

Consequently, the Pareto front for well-packed beds in xLC × xLC
shown in Fig. 2 was modified by imposing a restriction on the maxi-
mum  permissible stress. If a maximum stress of 2500 kg is allowed,
then the maximum bed length corresponding to a pressure drop of
5, 4, 3, 2, 1.5, and 1 MPa  is 100 mm,  111.8 mm,  129 mm,  158.1 mm,
182.6 mm,  and 223.6 mm,  respectively. Considering the maximum
pressure drop as a variable (varying between 5 and 1 MPa) and
applying the same procedure as in Section 3.2,  a new Pareto front
is obtained.

Fig. 4 illustrates an enlarged area of Fig. 2. The Pareto front con-
stituting of the × symbols corresponds to xLC × xLC using a bed of
HPLC quality, without any restrictions applied. The points denoted
with the � symbol include a limit on the maximum stress as men-
tioned above. For peak capacities below 1100 the two Pareto fronts
overlap. At peak capacities above 1100, the stress restriction causes
the Pareto front to rise steeply. This can be explained from the
Pareto optimal results for the bed length, particle size, and pres-
sure drop for the restricted variant of xLC × xLC, shown in Fig. 5A–C,
respectively.
Fig. 5C indicates that up to peak capacities of around 1100, the
Pareto-optimal pressure drop corresponds to the maximum allow-
able system pressure in xLC × xLC, which explains the overlap with
the unrestricted Pareto front. However, at higher values for the peak
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Fig. 5. Pareto-optimal results for optimization of peak capacity and analysis time
in xLC × xLC assuming a sorbent bed of HPLC packing quality, imposing a stress lim-
itation of 2500 kg, and using parameters from Table 1 and conditions as described
Section 3. In parts A–D, the x-axis corresponds to the total peak capacity (same axis
ithout stress restrictions; the line formed by the � symbols refers to the limit of
ur possibilities imposing a maximum stress of 2500 kg. For parameter values see
able 1 and for conditions see Section 3.

apacity, the stress limit can only be met  by increasing the parti-
le size and the bed length and reducing the pressure drop. Eq. (2)
nd Eq. (10) indicate that at lower pressures a higher peak capacity
an be achieved by increasing the bed length L in combination with
n increase in particle size dp. This is clearly observed in Fig. 5A
nd B. The situation is fully analogous to what is encountered in
onventional one-dimensional column LC.

However, as can be observed from Fig. 5B the optimal par-
icle size decreases at a certain point before it increases again.
his decrease might be explained by the fact that in the region
here this phenomena occurs the maximum allowable bed length

100 mm,  corresponding at 5 MPa  pressure) has been reached. From
he Darcy equation (Eq. (2))  the bed length L can now be seen as a
xed parameter. A further increase in development time tm in order
o obtain higher peak capacities will result in a decrease in particle
ize dp since all other parameters in this equation are now fixed. In
he region where lower pressures are found to be Pareto optimal
see Fig. 5C), longer beds packed with larger particles may  be used.

If one now considers the bed to have maximum dimensions
f 100 × 100 mm (equivalent to common stainless-steel MALDI
lates), then a maximum peak capacity of 780 in 2.7 min  can be
btained under practical xLC × xLC conditions (data not shown).
n case of well-packed packed beds, one may  ultimately obtain a
eak capacity of around 1020 in 2.7 min  in the xLC × xLC mode (see
ig. 5A and D). This corresponds to a peak-production rate of about
.3 peaks/s, which is, for example, 12 times higher than the value
or the impressive on-line tLC × tLC separation of plant metabolites
eported by Stoll et al. [25].

.4. Expanding the limits of xLC × xLC: hypothetical use of higher
ressures and smaller particles

As explained above, investing in the development of two-
imensional OPTLC devices is promising, since they can generate
igher peak-production rates than the best time-based two-
imensional (UHPLC × UHPLC) systems on the market. In order to
urther increase the peak-production rates, while avoiding the use
f very large beds, one may  consider the use of elevated pressures.
t follows from the previous paragraph that an increase in pres-
ure does not only result in shorter bed lengths, but also in smaller
articles.
To demonstrate the potential increase in peak-production rates,
 Pareto analysis applying extreme conditions (40 MPa, 1–12 �m
articles) was performed for xLC × xLC, using TLC-quality beds (data
ot shown). For a 100 mm × 100 mm bed, a maximum peak capacity
for  all four plots). y-axis: (A) optimal bed lengths in both dimensions; (B) optimal
particle sizes in both dimensions; (C) optimal pressure drop in both dimensions; (D)
total analysis time.

of 1460 may  ultimately be obtained in an analysis time of 1.3 min.
This would imply a 3- to 4-fold increase in peak-production rate in
comparison with the 5 MPa  conditions. However, to counterbalance
for the pressure drop across the 100 mm × 100 mm separation bed,
a compensating force of 20,000 kg would need to be applied.

One should be aware that, apart from the high stresses required,
the use of high pressures in liquid chromatography may  influence
the different experimental parameters used, as was investigated
in detail in [48]. It was shown that the pressure dependence of,
for example, the mobile phase density and viscosity, the diffusion

coefficients, the particle size, the retention factors, the efficiency
parameters, etc. is negligible, as long as pressures do not exceed a
few tens of MPa. As a result, the Pareto-optimal results obtained in
Sections 4.1–4.3 through the use of Eqs. (2)–(18) and using a 5-MPa
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Fig. 6. (A) Pareto-optimal surface obtained from a three-objective optimization (maximal total peak capacity, minimal total analysis time and minimal total dilution) for
x
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LC × xLC with a sorbent bed of HPLC quality and applying a stress limitation of 2500
ctual  Pareto experiments. The surface is defined by linear interpolation between th
n  a peak capacity vs. analysis time plot.

ressure limit in xLC × xLC may  be seen as valid. However, at higher
ressures (e.g. 40 MPa  or even higher) deviations become more
ignificant and the validity of Eqs. (2)–(18) may  be questioned.
A possible way to circumvent the use of higher system pressures
ay  be to work at elevated temperatures to decrease the mobile-

hase viscosity, as has been amply demonstrated in tLC × tLC

ig. 7. Pareto-optimal results for pressure drop (A), particle size (B), bed length (C), and in
ndicated through a color coding (top bars).
r parameter values see Table 1 and for conditions see Section 3. Symbols represent
ints. Part (B) represents the surface depicted in (A) through constant-dilution lines

[47,49–51].  Higher temperatures would enhance the performance
of xLC × xLC even when short bed lengths are used and relatively
low pressures.
Another way to achieve high-resolution xLC × xLC separations
may  be to combine electrically driven and pressure-driven flows
[29,52]. In the latter study the mobile phase was transported

itial spot size (D) along the Pareto-optimal surface of Fig. 6A. Parameter values are
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y an electro-osmotic flow, while the sorbent layer was pressur-
zed to allow efficient heat dissipation from the layer through
n electrically insulating and thermally conducting sheet of
eramic aluminium-nitride. Only one-dimensional separations
ere demonstrated. However, such separation systems are beyond

he scope of the present study and they will not be considered
urther.

.5. Effect of dilution in xLC × xLC: trade-off between analysis
ime, peak capacity, and dilution

So far, we have considered only the minimization of the analysis
ime and the maximization of the peak capacity of two-dimensional
ystems. From a practical point of view, however, the experimenter
ould like to find those optimal conditions that maintain other rel-

vant parameters within a reasonable range. One such parameter
s the dilution experienced by the sample. A simple way  to keep
ilution under control is to select this parameter as an objective in

 Pareto optimization.
The results of a three-objective Pareto optimization imposing

 restriction of 2500 kg on the total stress (see Section 4.3) for
LC × xLC using a well-packed bed (�P ranging from 1 to 5 MPa,
p from 4 to 12 �m)  are shown in Fig. 6. The Pareto front resulting
rom a three-objective optimization, representing the limit of our
ossibilities, is no longer a line but a surface. A simplified and more
uantitative representation of the surface is given by the contour

ines (at equal dilution) in Fig. 6B.
Each constant-dilution line represents the most favorable trade-

ff between analysis time and peak capacity for a fixed value of the
otal dilution. One should note that the constant-dilution lines are
alculated by interpolation. Therefore, the surface is poorly defined.

From Fig. 6A it can be observed that the surface is quite steep
round the best trade-off between time and peak capacity. This
ndicates that a large decrease in dilution only results in a minor
oss in peak capacity and/or a minor increase in time. This is clearly
bserved in Fig. 6B. Decreasing the dilution from, for example, 50
o 30 will not significantly decrease the total peak capacity and
ncrease the analysis time. However, if we want the dilution to be
ecreased even more, for example to a value of 10 or 5, a greater

oss in peak capacity and/or speed will have to be accepted.
It is instructive to inspect the optimal values of the parameters

long the Pareto surface. Fig. 7 illustrates the results of this anal-
sis. The values of the respective parameters are assigned a color,
hich is then projected on the surface of Fig. 6A. Fig. 7A–D reveal

hat neither the pressure, nor the particle size nor the bed length
ave a great influence on the high dilution rates (the color of the
urface does not change when descending along the steepest face
f the surface), where dilution varies greatly, without affecting the
rade-off between peak capacity and analysis time. In contrast, as
an be observed in Fig. 7D, by changing the initial spot size from 0.5
o 1 mm,  a significant decrease in the dilution factor is obtained, at
lmost no cost in peak capacity and/or time. This is achieved while
eaving the other parameters almost unchanged. For example, by
ncreasing the spot size from 0.5 to 1 mm  the dilution factor may  be
ecreased from 108 to 28, while the peak capacity only decreases
rom 1117 to 1072, leaving the other parameters (analysis time,
ressure, particle size, and bed length) unaffected. However, by

ncreasing the spot size even more (e.g. to 4 mm),  a much greater
egative impact on the trade-off between peak capacity and anal-
sis time is observed (see Fig. 7D).

In summary, under reasonable (stress) conditions high peak

apacities, short analysis times, and low dilution factors can be
btained by using high pressures, short beds, and small particles
nd by applying relatively large sample spots on the chromato-
raphic bed.

[
[

[
[
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5.  Conclusions

On-line, real-time, comprehensive two-dimensional time-
based (column) liquid chromatography is frequently used to obtain
high peak capacities within a reasonable time. However, the possi-
bilities to achieve attractive trade-offs between peak capacity and
analysis time are limited. In this study we used a Pareto-optimality
approach to evaluate the potential of spatial two-dimensional chro-
matography, i.e. a system in which the separations are achieved
using a porous medium to separate a sample in two (or ultimately
three) dimensions and the sample is separated two (or three) times
in perpendicular directions. Analytes are separated according to
their specific location in the plane, rather than their time of elution,
as in the case of column-based liquid chromatography. Spatial chro-
matography was  found to outperform time-based chromatography
in terms of (minimum) time and (maximum) peak capacity.

However, due to severe stress requirements, extremely high
peak capacities may  be difficult to achieve. In the immediate future
this type of liquid chromatography may  be most attractive for
very fast analysis of relatively complex samples, rather than for
extremely efficient separations. For example, by restricting the
stress to 2500 kg, a peak capacity of 780 may  be achieved in only
2.7 min  when using a 100 mm × 100 mm sorbent bed. If sorbent
beds could be packed with HPLC packing quality, the peak capacity
would further increase to around 1020.

Dilution factors may become excessive if very small injection
volumes (spot sizes) are applied. We  performed a Pareto-
optimization study using three objectives (minimal analysis
time/maximal peak capacity/minimal dilution). In this later opti-
mization the injection spot size proved to be one of the key
parameters. Increasing the injection spot size from 0.5 mm  to 1 mm
did not increase the analysis time, nor significantly decrease the
peak capacity, but it reduced the dilution factor from 108 to 28.

Even higher performances may ultimately be achieved if three-
dimensional spatial chromatographic separations can be carried
out. This would imply using a three-dimensional separation body,
in which the analytes would be separated sequentially along the
x-, y-, and z-axis. Each separated compound will then be character-
ized by a combination of its x, y, and z-coordinates in the separation
body.
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